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ABSTRACT 

I After insertion into the near-earth parking orbit a Go, No-Go decision has 
to be made, based on one minute of ship's tracking data. The deciding factor 
for the Go, No-Go decision is the perigee height of the parking orbit; a mini- 
mum perigee height of 75 n.mi. is required. In this paper, a statistical analysis 
has been made of the e r r o r  in the perigee height, as determined from one min- 
ute of ship's tracking data. It is shown, that the computed perigee height has to 
be 0.5 to 17 n.mi. higher than 75 n.mi. in  order to insure that the actual perigee 
height exceeds 75 n.mi. with 99.5% probability. The use of a 17.n.mi. padding 
is recommended in order to cover worst case conditions. . 
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I '  
SUMMARY 

A t  insertion, the following parameters: 

radius 

speed "0 

flight path angle yo 

will be determined from one minute of a ship's tracking data. In reference 2,  it 
is required that these parameters be determined to the following accuracies: 

~ 3 0  = 2 . 4  n.rni. (4 .44km) 
I r 0  
, 

Sov0 = 16 ft/sec ( 4 . 8 7  m/sec) 

3a = 0.16" ( 2 . 7 9  mad) 
Y O  

I 
I A statistical analysis of the perigee height e r r o r  due to the above insertion 

parameter uncertainties is presented in this paper. Gaussian distributions are 
assumed for  the e r r o r s  in the insertion parameters (i.e., measured minus actual) 
and correlations between theerrors  are taken into account. The results are ap- 
plied to  the Apollo Go, No-Go decision at insertion. 

For a Go decision, an actual perigee height of 75 n.mi. is required with 
99.5% probability (reference 1). It is shown that the computed perigee height 
(from ship's tracking data) has to be 0.5 to 17 n.mi. higher than 75 n.mi. in 
order to  meet this requirement. The required padding is a function of the ec- 
centricity e of the parking orbit, the true anomaly 8 at insertion, the e r r o r s  in 
the insertion parameters and their correlations. 

I 

I 

I 

The results of the analysis may be summed up in the following recommen- 

1. A padding of 17 n.mi. should be used to insure with a 99.5% probability 
that a Go decision is correct. This value covers the following cases: 

a. 

b. 

c. 

I dation s : 

All  eccentricities in the region 0 5 e 5 0.01. 

All  values of true anomaly at insertion. 

Al l  values of correlation coefficients p between e r r o r s  of the in- 
sertion parameters in the region 0 5 1 p I 5 0.9. 

2. The parking orbit should have the smallest possible eccentricity and a 
true anomaly close to 0" at insertion in order to minimize the perigee 
height error.  
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THE EFFECT O F  INSERTION SHIP 
TRACKING ERRORS ON THE APOLLO 

GO, NO-GO DECISION 

1. INTRODUCTION 

For the Apollo mission a decision to continue o r  not continue, i.e., the Go, 
No-Go decision, will have to be made shortly after the spacecraft is inserted 
into the parking orbit. 

Three sources of data are available for  the Go, No-Go decision: the inser- 
tion ship and two on board inertial guidance systems. One of the on board sys- 
tems is located in the S-IVB and the other in the Apollo spacecraft (Command 
Module). Normally, the Go, No-Go decision will be made using the two on board 
systems. In the event these two systems are  in disagreement, the insertion 
ship will be used as an arbiter (reference 1). 

This report is a statistical analysis of the effect of tracking measurement 
e r rors  by the insertion ship on the e r ror  in perigee for near-earth Apollo 
parking orbits. The results of this analysis are applied to the Apollo Go, No-Go 
decision at insertion. 

Figure 1 shows the geometry at insertion. The critical insertion parameters 
are the radius r o, the magnitude of the velocity v0 , and the flight path angle yo. 

A s  required in reference 2, these insertion parameters must be determined 
from the ship's tracking data with the following accuracies: 

3cr0 = 2 . 4  n.mi (4.44 km) 

3av0 = 16 ft/sec ( 4 . 8 7  d s e c )  

3cr0 = 0.16" ( 2 . 7 9  mrad) 

It is shown in reference 3,  Chapter 3, that these accuracy requirements 
can be met with one minute of tracking by the ship if the tracking e r ro r  model 
from reference 4 is used. Three minutes of tracking is obtainable with the 
positions of the insertion ship as planned in reference 3. Thus, since only one 
minute of tracking data is needed, this provides a margin for loss of data due 
to delayed acquisition, interrupted tracking, etc . 

The Go, No-Go decision will be based upon the perigee height. In reference 
2 a minimum perigee height of 71  n.mi. (131 km) is required. In order to allow 
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Figure 1. Insertion Geometry. 

for two orbits before re-entry, a minimum perigee height of 75 n.mi. (139 km) 
is suggested in reference 1, and a 99.5% probability is required to achieve this 
minimum height if a Go decision is made (reference 1). 

The perigee height may be calculated from the insertion parameters by 
means of the Keplerian two-body equations of motion. However, due to e r ro r s  
in the insertion parameters as determined from the ship's tracking data, there 
will be m er ror  associated with the calculated perigee height. It is the purpose 
of this report to study the probability distribution of perigee e r ro r  and apply the 
results to the Apollo Go, No-Go decision at insertion. 

Distribution determination of the perigee e r r o r  is important from the stand- 
point of astronaut safety. If the actual perigee height is lower than the calculated 
perigee height, an incorrect Go decision could be made (i.e., one where the 
actual perigee height is lower than 75 n.mi.). This would be detrimental to the 
safety of the astronauts due to the excessive re-entry heat. 
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As stated in reference 3, a circular parking orbit i s  planned. However, an 
elliptical orbit should not be ruled out, in which case the perigee height may be 
zt 85 ii.iiii. (157 kiii) aid the apogee height at i50 n.mi. (278 km). Both circular 
and elliptical parking orbits a r e  therefore treated in this analysis. 

2. THE CUMULATIVE DISTRIBUTION OF PERIGEE ERROR 

2.1 The Perigee Er ro r  

The spacecraft has the actual or  true insertion parameters r,, v,, and yo. 
The actual perigee radius r p  can be determined from the Keplerian two-body 
equations of motion. 

r a ( l  - e) 
P 

(2.1.1) 

(2.1.2) 

(2.1.3) 

where a = semi-major axis of the parking orbit 

e = eccentricity of the parking orbit 

p = gravitational constant of the ear th  (398603.2 (km) 3 / s e ~  2) 

by eliminating a and e as shown in Appendix A. Thus, the perigee radius r p  
is a function of r,, V, , and yo .  

Since the insertion parameter.s a re  determined from the ship’s tracking 
data, they will be in error by the amounts A r,, Avo, and Ay,. Therefore, the 
calculated perigee radius rpc a will deviate by Arp from the actual perigee 
radius rp .  

Ar P = r Peal - r p  = rp  ( r ,  + Ar,, vo + Avo,  7, + AY,> - r p  0,’ V 0 ’  7,) 

(2.1.4) 

This equation determines Arp a s  a function of the insertion parameters and 
their errors .  By eliminating r,, vo, and yo with the aid of equations (2.1.1) 
through (2.1.3), an alternate expression fo r  Arp results (equations B.63, B.64, 
and B.68 of Appendix B). 

A r  P = Arp (a, e ,  8, Ar,,  Avo ,  Ay,) (2.1.5) 
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The advantage of using equation (2.1.5) is that @ r p  is almost independent of 
the semi-major axis a. In the range of a-values of interest, we may write 

In this form Ar, depends only upon two parameters, the eccentricity e of 
the actual orbit and the true anomaly 8 at insertion. This greatly simplifies 
the statistical analysis of A r p .  

2.2 U s e  of the Cumulative Distribution Function F 

An example of a cumulative distribution function 

where ARp = the random variable and A r p  = a particular value of AR,, is shown 
in Figure 2a. (For derivation of the distribution function see Chapter 2.3.) The 
use of this function can be demonstrated best by an example. 

Assume that the calculated perigee height ( rp, ,  , - r e )  is 79 n.mi. (146 km). 
- r e )  is 75 n.mi. (139 km), and it The allowed minimum perigee height ( r  

appears that a Go decision could be made. However, the condition for making a 
correct Go decision is 

P m i n  

r -  ‘e - > 75 n . m i .  (2.2.1) P 

Using (2.1.4) and substituting ARp for A r p  (since we wish to make a state- 
ment of probability we will use the random variable O R p )  we can write 

Therefore, 

o r  

79 n . m i .  - ARp 1 75 n . m i .  

ARp 5 4 n . m i .  (7.4 km). (2.2.2) 

From the cumulative distribution function in Figure 2b, we see that the 
probability for satisfying (2.2.2), i.e., making a correct Go decision, is: 

P ( A R p  5 4 n . m i . )  F = 93%. (2.2.3) 
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Figure 20. Cumulative Distribution 

Function F of the Perigee Error 

ARp. F F ( A r p )  P(AR < Arp). 
<~ 

P -  

Figure 2b. With a Padding of 
4 Nautical Miles, the Probability 

for a Correct GO Decision i s 
93%. 

Figure 2c. A Padding of 7.4 
Nautical Miles I s  Required for 

a 99.5% Probability of  a Correct 
GO Decision. 
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Using the same function (see Figure 2c), for  a 99.5% probability, the calcu- 
lated perigee height ( rpc  a - r e )  has to  be 

- r e )  - 7 5  n.mi.  1 7 . 4  n.mi.  
( r P c a l  

o r  

( r P c a i  - r e )  1 82.4  n.mi.  (2.2.4) 

In other words, a padding of 7.4 n.mi. (13.7 km) is required to  insure with a 
99.5% probability that the true o r  actual perigee height exceeds 75 n.mi. (139 km). 

The cumulative distribution function F used in the above example is valid 
for  e = 0.001, B = 180°, and no correlation between the random variables ARo,  
AVO, and O r o (  ) . The required padding for  other insertion parameters and 
different correlations between ARo,  A V O ,  and ATo is analyzed in Chapter 3. 

2.3 Computation of the Cumulative Distribution Function F. 

Normally, the first step in an e r r o r  analysis is to develop a variational 
equation expressing A r p  as a function of A r o ,  Avo, and Ayo. This is done in 
Appendix B (Equation B.79), and it is shown that the variational equation is a 
second order equation in A rp  of the form: 

t a 2 A r o A r p  -+ 
a l  ATP 

-+ terms of h i g h e r  o r d e r  

where the coefficients a i ( i  =1,2,3,4)and pi (i = 1 , 2 ,  ..., 9) are functions of 
the insertion parameters ro ,  v0, and yo. 

~ 

( l ) H e r e  ARo, AVO and A r o  are random variables representing the errors in insertion radius, 
velocity magnitude, and flight path angle, to be distinguished from Are, Avo, and Ayo which 
are values which ARo, AVO, and A r o  can assume. 
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Equation (2.3.1) has simple solutions for two special cases. For a cir-  
cular orbit, the coefficients of the iinear terms vanish and the resuit is Equation 
(B.82) of Appendix B: 

For large e-values the second order terms may be neglected, and the re- 
sult is a simple linear expression in Ar, ,  A v o ,  and Ay,. In particular, if 
0.005 5 e 5 0.05, equation (9) from reference 5 is valid 

A r p  2 ( 2  - cos 8) A r ,  f 2 (1 - cos 8 )  ($) Avo - ( r ,  s i n  8) A y ,  . (2.3.2) 

The range of e-values of interest in this report is 0 - < e - < 0.01. In the 
region0 5 e 5 0.005, the variational equation (2.3.1) confuses rather than aids 
the analysis. Therefore, the basic definition, equation (2.1.4), has been used. 

It should be noted that this latter expression is exact. The value of equations 
(B.82) and (2.3.2) lies in their simplicity. Consequently, in their region of valid- 
ity, they have been used as a check against the numerical computations performed 
using (2.1.4), 

If ARo,  AVO,  and ATo are assumed to be normally distributed random vari- 
ables, then the cumulative distribution function of perigee e r r o r ( 2 )  

can be written in integral form. However, th i s  integral cannot be expressed in 
terms of known o r  tabulated functions, but must be evaluated by numercial tech- 
niques - either a Monte Carlo approach o r  numerical integration. The latter 
approach has been used in th is  analysis, and is described in Appendix B. 

If the e r r o r  in perigee is expressed in terms of the orbital elements 
a, e, e 

ARP = ARp (a, e ,  8, A R , ,  A V O ,  Are) (2.3.4) 

(*)Again, s ince we are dealing with probability distributions we will u s e  random variable 
notations. 
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10 (n. mi .) -10 -5 0 5 

Figure 3. The  Cumulative Distribution Function F (nrp) Varies Insignificantly i f  the Semi-Maior 

Ax is  a I s  Varied i54 Nautical Mi les (+ lo0  km) Which Is Approximately Six Times the Variation 

i n  a for this GO, NO-GO Analysis. Insertion Parameters: Eccentricity e = 0.01, True Anomaly 

at Insertion B = 225". 

we see in Figure 3 that ORp is almost independent of the semi-major axis a for 
a-values of interest in the Go,  No-Go analysis. Figure 3 shows the cumulative 
distribution functions for ARp for the following values of a: 

3490 n.mi., 3544 n.mi., and 3598 n.mi. 
(6463 km, 6563 km, 6663 km) 

Although a varies f 54 n.mi. ('t 100 km), or  approximately six times the 
expected variation in a for this analysis, the cumulative distribution functions 
vary insignificantly. We may therefore neglect the variation in a ,  and use an 
average value of 3544 n.mi. (6563 km). This will greatly simplify the analysis. 
Hence, 

A computed probability density function of perigee e r ro r ,  f (Arp) for  an 
actual circular parking orbit ( e  = 0 )  for both correlated and uncorrelated inser- 
tion errors  ARo,  AVO, and A r 0  is shown in Figure 4a. The computed cumulative 
distribution function 
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Figure 4a. Probability Density Function f of Perigee Error AR for a Circular Orbit. Insertion 
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Figure 4b. Cumulative Distribution Function F for the Above Probability Density Function f. 
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(2.3.6) 

is shown for the same conditions in Figure 4b. It is of interest to note that the 
perigee error  does not have a mean of zero and is - not normally distributed. 

Figures 5 through 8 show cumulative distribution functions for eccentrici- 
ties of e = 0.0005, e = 0.001, e = 0.005, and e = 0.01. In each instance there are 
curves for  both correlated and uncorrelated insertion errors.  For uncorrelated 
e r ro r s ,  curves a re  plotted for true anomalies at insertion of 0 = 0", go", and 
180". The F-curves are even functions of 8 for uncorrelated e r r o r s  and hence 
are also valid for 0 = -90". For  correlated e r ro r s ,  the curves are no longer 
even functions of 0,  and have therefore been plotted for 0 = 0" and B = 180" *45". 
In all of these figures, the "3 sigmaTT limits for  the insertion e r r o r s  have been 
taken as 

= 2 . 4  n.mi. ( 4 . 4 4  km) wAr 

3%, = 16 f t/sec ( 4 . 8 7  d s e c )  

3wAy0 0.16" (2 .79  m rad) . 

2.4  Verification of the Numerical Integration 

It has already been mentioned that in its region of validity equation (2.3.2) 
is a very good approximation for the perigee e r ror .  This can be seen in Figures 
9a and 9b where the cumulative normal distribution function using (2.3.2) is 
compared with the cumulative distribution function of perigee e r r o r  obtained 
by numerical integration. In both figures, the semi-major axis was taken to be 
3544 n.mi. (6563 km) and the eccentricity of the parking orbit e = 0.01. In Fig- 
ure 9a, B = 225" and the coefficients of correlation of the e r r o r s  at insertion 
ARo, AVO, and A r 0  a r e  all equal t o  0.75. It  can be seen that the agreement be- 
tween the two methods is very good. In Figure 9b, 0 = 180", and the e r r o r s  
are uncorrelated. Again the agreement between the two methods is very good. 

In Appendix B, Figures 19 and 20, the required padding for 99.5% probabil- 
ity is compared using both numerical integration and equation (2.3.2). Again, 
there is good agreement. 
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Figure 6a. Insertion Parameters: 
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Cumulative Distribution Function F of Perigee Error ARp. 
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Figure 8b. Insertion Parameters: 

a = 3544 n.mi. (6563 km), e = 0.01, B = 0", 90" ,  180". Insertion Errors Are Uncorrelated. 

Cumulative Distribution Function F of Perigee Error ARp. 
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the Cumulative Normal Distribution Approximation for Large Eccentricities. Insertion Parame- 
ters: a = 3544 n.mi. (6563 km), e = 0.01, 8 = 180". Insertion Errors Are Uncorrelated. 
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3. THE GO, NO-GO DECISION 

An incorrect Go decision (one where the true o r  actual perigee height is less 
than 75 n.mi.) could endanger the lives of the astronauts. Therefore, a 99.5% 
probability is required for a correct Go decision (reference 1). Since there will  
always be an e r r o r  A r p  in the calculation of the perigee height, a padding must 
be added to  the minimum required perigee height of 75 n.mi. (139 km) in order 
to have a 99.5% probability that the actual perigee height exceeds 75 n.mi. The 
required padding must be equal to  o r  greater than that value of A r p  for which 
F(Arp) = 0.995. Hence, it can be read off the cumulative distribution curves in  
Chapter 2 at the point where F = 0.995. 

In this chapter, the required padding is analyzed and is seen to depend sig- 
nificantly on the eccentricity e ,  the true anomaly at insertion 8, and the corre- 
lation coefficients between the insertion e r rors .  A s  discussed in paragraph 2.1, 
the required padding depends insignificantly on the semi-major axis a .  Since it 
is practically impossible to determine the actual coefficients of correlation 
between the insertion e r rors ,  the calculations have been carried out for coeffi- 
cients of correlation of 0, *0.75, and *0.9. That is, all possible combinations of 
signs have been considered with the exception of those for  which the covariance 
matrix becomes singular. Throughout the analysis, it has been assumed that the 
insertion e r r o r s  aRo, AVO, and A r 0  are normally distributed random variables 
having means of zero and "3 sigma" values of: 

- ~ D A ~ ~  - 2.4 n.mi. (4.44 km) 

= 16 ft /sec (4 .87  m/sec) cAvo 

= 0.16" (2.79 m rad) 
D ~ y o  

Table 1 shows the maximum required padding for eccentricities from 0 
through 0.01. Also shown are the associated true anomalies at insertion and the 
coefficients of correlation for the insertion errors .  

Figures 10 through 14 show the required padding for a 99.5% probability of 
a correct Go decision. The figures are for  eccentricities of 0, 0.0005, 0.001, 
0.005, and 0.01, and the curves are plotted versus true anomaly at insertion 8 .  
In each figure there are two sets of curves - those for  correlation coefficients 
of 0.75 and those for correlation coefficients of 0.9. 

It is of interest t o  note that for eccentricities in the range e 0.001, the 
maximum required padding occurs when the insertion e r r o r s  are uncorrelated. 
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Table 1 

13 5 

22 5 

13 5 

22 5 

Maximum Required Padding for a 99.5% 
probability for a Correct Go-Decision 

M.9 -0.9 -0.9 

+0.9 +0.9 +o .9 

+0.9 -0.9 -0.9 

+0.9 +0.9 +0.9 

Eccentricity 

17.2 

~ 

0 

31.8 

0.0005 

0.001 

0.005 

0.01 

Max. Required 

Padding 

I 
17*1 I 31*7 ' 

True anomaly I Coefficients of Correlation 

All values 0 0 0 

18 0 0 0 0 

180 I 0 ) O I O  

For eccentricities in the range e 2 0.005, high correlation gives the worst case. 
The maximum required padding does not increase substantially if e is increased 
above 0.005. This result obtained from numerical integration also agrees with 
equation (2.3.2) which is valid in the region 0.005 e 5 0.05, and is independent 
of e .  

4. CONCLUSIONS 

4.1 The Optimum Orbit 

From the standpoint of the Go, No-Go decision, a circular parking orbit is 
most desirable for two reasons: 

1. For a given insertion energy, the perigee height is the greatest, giving 
the largest margin between the actual perigee height and the required 
minimum. 
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Figure loa. Required Padding as a Function of True Anomaly at Insertion i n  Order to  Insure with 
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(A l l  Possible Combinations of Signed Values of 0.75) and Uncorrelated Insertion Errors. 
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Figure 11 b. Required Padding as a Function of True Anomaly at  Insertion in  Order to Insure with 
a 99.5% Probability that the Actual Perigee Height Exceeds the Allowed Minimum (rpmin - re) of 

75 n.mi. (139 km). Insertion Parameters: a 3544 n.mi. (6563 km), e = 0.0005. Correlated 
(A l l  Possible Combinations of Signed Values of 0.90) and Uncorrelated Insertion Errors. 
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Figure 12a. Required Padding as a Function of True Anomaly a t  Insertion in  Order to Insure with 
a 99.5% Probability that the Actual Perigee Height Exceeds the Allowed Minimum (rp - re) of 

75 n.mi. (139 km). Insertion Parameters: a = 3544 n.mi. (6563 km), e = 0.001. Correlated (All 
Possible Combinations of Signed Values of 0.75) and Uncorrelated Insertion Errors. 
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Figure 12b. Required Padding as a Function of True Anomaly at  Insertion in Order to Insure with 
a 99.5% Probability that the Actual Perigee Height Exceeds the Allowed Minimum (rPmin - re) of 
75 n.mi. (139 km). Insertion Parameters: a = 3544 n.mi. (6563 km), e = 0.001. Correlated (A l l  
Possible Combinations of Signed Values of 0.90) and Uncorrelated Insertion Errors. 

20 



15 

- 
.E 
5 
c7 z 
i -  : ;  

0- 

21 

- 

- 

- 
- 
- 
- 

- y 
2 - 

i o -  0 

-; 

- 
- 

5 -  

- 
- 
- 
- 



I5 

7 
E 
.- 
- 
0 -  
z n 
n -  s 

Figure.14b. Required Padding as  a Function of True Anomaly a t  Insertion i n  Order to Insure with 
a 99.5% Probability that the Actual Perigee Height Exceeds the Allowed Minimum (rp - re) of 

75 n.mi. (139 km). Insertion Parameters: a 3544 n.mi. (6563 km), e = 0.01. Correlated (A l l  
Possible Combinations of Signed Values of 0.90) and Uncorrelated Insertion Errors. 

m i n  

- 
- 30 

- 

- 
25 0 .0  0.0 0.0 - -- 0.75 0.75 0.75 - - - - - - - 0.75 -0.75 -0.75 

- -0.75 0.75 -0.75 
-0.75 -0.75 0.75 - 

20 

10- 
E 

- 5  
0 

n z 15 

s 0 

- 
10 

5 -  

- 
- 
- 
- 

TRUE ANOMALY 
0-  0 AT INSERTION 

0 45 w 135 180 225 270 315 360 0 (degrees) 

22 



I 2. 

Since the circular orbit cannot be achieved in actual flight, the optimum or- 

A s  shown in Chapter 3, the perigee e r ro r  is smallest. 

bit is therefore one which has the smallest eccentricity. In addition, as shown in 
Chapters 2 and 3,  insertion at a true anomaly of B = 0" is desirable in order to  
minimize the e r r o r  in perigee A rp,  

I 4.2 The Required Padding 

In Chapter 3 it was shown that the required padding depends significantly on 
the eccentricity e of the parking orbit, increasing with e in the region 0 5 e 5 
0.005, and remaining nearly constant in the region 0.005 5 e 5 0.01 (Figures 10 
through 14). In order to use the smaller required padding corresponding to  
smaller e-values, the insertion ship must have the capability of determining the 
eccentricity of the orbit with sufficient accuracy. This can be clarified with an 
example. 

I The maximum required padding for an eccentricity of e = 0.001 is 7.5 n.mi. 
I 

(14 km) according to Figures 12a and 12b in Chapter 3. In order to use this 
value, however, the ship must be able to verify that e 5 0.001 for the actual or-  
bit. The calculated eccentricity ec a 

Figures 15a and 15b show the cumulative distribution functionH (ne) of the e r r o r  
in eccentricity AE for orbits with 

is a function of the measurement errors.  

e = 0.001 

- 3 a r o  - 2 . 4  n.mi. (4.44 km) 

= 16 f t / s e c  (4.87 m/sec) 3 C v o  

= 0. 16" (2.79 mrad) 
Y O  

3a 

For the derivation and calculation of H(Ae) see Appendix C. 

It is seen from these curves that the insertion ship cannot verify that 
e I 0.001. Therefore, the small padding of 7.5 n.mi. (14 km) cannot be used. 

The cumulative distribution function H(Ae) for  an actual orbit with e = 0.005 
is shown in Figures 16a and 16b. It is evident from these figures that even an 
eccentricity as large as e = 0.005 cannot be determined accurately enough by 
the tracking ship. Therefore, the smaller required padding corresponding to 
the lower e-values cannot be used. 
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Figure 15a. Cumulative Distribution Functions of the Error i n  Eccentricity for Various Values of 

True Anomaly at Insertion. Insertion Parameters: a = 3544 n.mi. (6563 km), e = 0.001. Un- 

correlated Insertion Errors. 
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Figure 15b. Cumulative Distribution Functions of the Error in Eccentricity for Various Values 

of True Anomaly at Insertion. Insertion Parameters: a = 3544 n m i .  (6563 km), e = 0.001. 
Correlated Insertion Errors.  PA^ o ~ v  - 0.9, PA" = k0.9) - - - 

0 0  
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Figure 160. Cumulative Distribution Functions of the Error i n  Eccentricity for Various Values 

of True Anomaly at Insertion. Insertion Parameters: a = 3544 n.mi. (6563 km), e 0.005. 
Uncorrelated Insertion Errors. 
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Figure 16b. Cumulative Distribution Functions of the Error i n  Eccentricity for Various Values 

of True Anomaly at Insertion. Insertion Parameters: a 3544 n.mi. (6563 km), e = 0.005. 
Correlated Insertion Errors ( p ~ ~  A V  = t0.9, ~ A ~ ~ A ~ ~  - - = k0.9) 
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A s  previously mentioned, the required padding does not increase significantly 
for e 2 0.005. It is therefore recommended that the maximum padding of 17 n.mi. 
(32 km) fo r  e 2 0.005 be used as a required padding. This value insures with a 
99.5% probability that the actual perigee height exceeds the required minimum 
perigee height for the following cases: 

1. 

2. 

3. 

All  eccentricities in the region 0 5 e 5 0.01. 

Al l  values of true anomaly at insertion. 

Al l  values of correlation coefficients p between the insertion e r r o r s  in 
the region 0 IpI 5 0.9. 

4.3 Recommendations 

The results of this analysis may be briefly stated in the form of the follow- 
ing recommendations: 

1. 

2. 

3. 

A padding (calculated perigee height 2 required minimum perigee 
height + padding) of 17  n.mi. (32 Ism) should be used in  order to insure 
with a 99.5% probability that a positive Go decision is correct. 

The near-earth Apollo parking orbit should have the smallest possible 
eccentricity in order to achieve the largest possible margin between 
the actual perigee height and the required minimum perigee height. 

Insertion of the Apollo spacecraft should occur at a true anomaly as 
close as possible to 8 = 0" in order to minimize the perigee height 
error.  
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GLOSSARY AND DEFINITION OF SYMBOLS 

Random vector. Let V , ,  V,, . . ., Vp be p random variables. Then the (PX 1) 
vector V, 

is a random vector. 

Multivariate Normal Distribution. Let the p -dimensional random vector V have 
the probability density function 

where 9 is the vector of constants 

and R is a (p x p) positive definite matrix. Then V has a nonsingular multi- 
variate normal distribution with mean vector I ( V )  = 7) and covariance matrix 

I [(v - ?) (V  - 7)P] = n. 

Uncor re1 a t  ed The random variables V ,  and V, are  said to be uncorre- 
lated if  the coefficient of correlation p, , 
zero. 

between them is 

Error  

a 

The measured o r  calculated value of a quantity minus its 
actual or  true value 

Semi-major axis of the parking orbit 
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c3 

D 

Element in the i t  column of the orthogonal 
matrix B relating ine normal vector Y (Components are  
uncorrelated) to the normal vector X (components are 
correlated) suchthat Y = BX 

row and j 

The (3 x 3) diagonal matrix relating the normal vector W to 
the normal vector X such that W = AX. The matrix A has 
the diagonal elements G-A* , aAv0, and DA . 

Y o  

The (3 x 3) orthogonal matrix relating the normal vector 
Y (components are uncorrelated) to the normal vector X 
(components are correlated) such that Y = BX. The matrix 
B is also the transpose of the matrix C . 
Element in the i t h  row and j t h  column of the (3 x 3) ortho- 
gonal matrix C relating the normal vector Y (components 
are uncorrelated) to the normal vector X (components a re  
correlated) such that X = CY. The matrix C is also the 
transpose of the matrix B . 
The (3 x 3) orthogonal matrix relating the normal vector 
Y (components are uncorrelated) to the normal vector X 
(components are  correlated) such that X CY. The matrix 
C is also the transpose of the matrix B .  

An orthogonal matrix (3 x 3) which diagonalizes the corre- 
lation matrix P , ,  i.e., C:P,C, is a diagonal matrix. 

An orthogonal (3 x 3) matrix which diagonalizes the corre- 
lation matrix P,,  i.e., C,TP2C, is a diagonal matrix. 

An orthogonal (3 x 3) matrix which diagonalizes the corre- 
lation matrix P,, i.e., C;P3C, is a diagonal matrix. 

A (3  x 3) diagonal matrix having A 1, A 2 ,  and A 
elements. D = ETPE where E is an orthogonal matrix and 
P is the covariance matrix of X (correlated components). 

as  diagonal 

A calculated value of eccentricity. 
- 

e C a l  - e ( r o  i- Are, vo + Avo, Y o  + bo> 

e The actual o r  true value of eccentricity. 
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f 

The expected value of the random variable X, . I i s  the 
expectation operator. 

A (3 x 3) orthogonal matrix which diagonalizes the corre- 
lation matrix P ,  Le., D 1 ETPE is a diagonal matrix having 
A 1, A,, and A, as diagonal elements. 

Probability density function of the normally distributed 
random variable Y 1. 

Probability density function of the normally distributed 
random variable Y ,  . 
Probability density function of the normally distributed ran- 
dom variable Y, . 
Joint probability density function of Y 1, Y ,, and Y , where 
Y ,, Y , , and Y , are independent normal random variables. 
f ( Y 1 ’  Y , ’ Y 3 )  = f l ( Y 1 )  f , ( Y , )  f , ( Y , ) .  

The probability density function of the e r ro r  in perigee A R  
We have f = F’ ( A T p )  = f ( A r p )  

P ’  

Cumulative distribution function of ARo 

The cumulative distribution function of the e r r o r  in perigee 
ARpwhere F = P ( A R  < A r , )  = F ( A r p )  

P -  

The probability density function of the standardized normal 
random variable X . 
The joint probability density function of X,, X,,  and X, 
where X , ,  X,, and X, are  components of the normal vector 
X. 
The cumulative distribution function for the standardized 
normal random variable X . 
The cumulative distribution function for the e r r o r  in ec- 
centricity AE. 

The (3 x 3) identity matrix. 

The Jacobian of the transformation between X, , X,, X, and 
y,, Y,, Y,.  
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/ a x ,  
where I1rnodT1 means the absolute value of the expression 
following it. 

The cumulative distribution function for the e r r o r  in true 
anomaly A@. 

A constant given by (see m also). 

Upper and lower limit (in number of standard deviations) 
for the approximation to the range of each independent 
normal random variable Yi (i = 1, 2, 3). 

A constant given by (see 1 also) 

m o d  

( 2 N  + 1)  

where ( m  > 1 )  

An operator which means the absolute value of the expression 
following it. 

Total number of subdivisions (extending from -Layi  to + L a y i  ) 
for the approximation to the range of each independent 
normally distributed random variable Y (i = 1, 2 ,  3). 

The probability that the discrete approximation Yi' to the 
normally distributed random variable Yi assumes the value 
y1, where y.' 
( y i ,  - Oy,, y1, + Ayi). We have 

is the midpoint of the interval 
lk 
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- 
P(y1, - n y i  I Y i  < y;, t n y i )  ", P(Y'. 1 = '1,) - pik 

where 

( i  = 1, 2, 3 )  and ( k  = 1, 2, 3, ..., (2N + 1)) 

Also 

P j k l  The joint probability that the discrete random variable ap- 
proximations Y i, Y;, Y; to the independent normal random 
variables Y 
have 

Y 2, Y 3  assume the values y i ,  , yLk, Y i ,  a We 

where ( j ,  k, 1 = 1, 2, 3, ..., 2N t 1)  

P(Y1 = y l , )  The probability that Y l  (i = 1, 2 ,  3) takes the value y1, 
(k = 1, 2 ,  3, . . ., 2N + 1). P denotes "probabilityT' here. 

P 

p2 

Correlation matrix o r  covariance matrix of the normal vec- 
tor X when p, 1 x  

A real symmetric positive definite square matrix of order 3. 

Correlation matrix o r  covariance matrix of the normal vec- 

A real symmetric positive defmite square matrix of order 3. 

= p ,  (0 5 p < 1). - - - - 
p x 2 x 3  p x  1 

= p (0 5 p < 1). - - 
tor X when pXl,, - -p, P X I X %  - -p, P x 2 x 3  

Correlation matrix o r  covariance matrix of the normal vec- 

A real symmetric positive definite square matrix of order 3. 
= -p,  (0 I p < 1). P ,  P X 2 X 3  

- - - tor X when p x 1 5 2  - ' P ,  P X l X 3  

Correlation matrix o r  covariance matrix of the normal vec- 

A real symmetric positive deiinite square matrix of order 3. 

- - - tor  X when px lxz  - p ,  px1x3 . * -  -p, P x 2 x 3  - -p, (0 I P < 1). 

Value of the normal probability density function of Y i  (i = 1, 
2, 3) at the point y! (k = 1, 2 ,  3 ,  . . ., 2N + l), Le., 

'k  
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Q 

r e  

r 

I 
P 

r 
P c a l  

r 
P min 

I 

"0 

W 

x- space 

-+ 
x 1  

4 

x 2  

+ - - .  
x 1  x 2  

(see also p.  ). 
'k  

The covariance matrix of the normal vector Y. We have 

Q = &(WT) = BPBT = CTPC. 

Radius of the earth. 

Perigee radius.  

Calculated perigee radius (from the ship's tracking data). 

Required minimum perigee radius. 

Magnitude of the radius vector at insertion. 

A normalizing sum, i .e., 

2 N t  1 

si = cgik ( i  = 1, 2, 3) 
k =  1 

(see also p.  ). 
'k 

The magnitude of the velocity vector of insertion. 

Normal random vector having the components ARo, AVO, and 
oro. 

Refers to the correlated "spacett of the normal random vari- 
ables x , ,  x,, and x,. 

Normalized eigenvector corresponding to the eigenvalue 
A, = 1 + 2p (0 I p < 1 ) .  

Normalized eigenvector corresponding to the eigenvalue 
A 2 = l - p  ( O ~ p < l ) .  

The dot product of the normalized eigenvector 21 with the 
normalized eigenvector 2 . 
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-+ 

x3 

X 

X 

y-  space 

Y 

I I I 

Y l j  ' Y 2 , '  y3, 

y , ,  y , ,  y, 

y;,  y;, y; 

Z 

ai 

Pi 

The normalized eigenvector corresponding to the eigenvalue 
A , = l - p  ( O < p < 1 ) .  

Normal random vector having correlated standardized normal 
random variables X , ,  X,, and X, as components. 

Standardized normal random variable. A component of X . 

Standardized normal random variable. A component of X. 

Standardized normal random variable. A component of X. 

Discrete random variable approximations to the standardized 
normal random variables X,, X,, and X, . 
A standardized normal random variable. 

Refers to the uncorrelated "space" of the uncorrelated nor- 
mal random variables Y ,, Y,,  and Y , .  

Normal random vector having the uncorrelated normal random 
variables Y , , Y,,  and Y, as components. 

Values that the discrete random variable approximations 
Y i, Y;, Y; to the uncorrelated normal random variables 
Y , ,  Y, ,  Y ,  can take ( j ,  k, 1 = 1, 2,  3 , .  . ., 2 N  + 1). 

Uncorrelated normal random variables. Components of the 
normal vector Y .  

Discrete random variable approximations to the uncorrelated 
normal random variables Y ,, Y ,, and Y , .  

Normal random vector having the uncorrelated standardized 
normal random variables Z,,  Z, , and Z, as components. 

Uncorrelated standardized normal random variables. Com- 
ponents of the normal random vector Z .  

Coefficients in variational equation for A rp. Functions of 
ro, vo, and yo. (i = 1, 2,  3, 4) 

Coefficients in variational equation for A rp.  Functions of 
ro, vo, and yo. (i = 1, 2 , .  . ., 9). 
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A e  

AE 

n r; 

r P  

RP 

A value for the e r ror  in eccentricity OE due to metric track- 
k g  errers by the $-sert,im ship. We hawe A e = ec a i  - e . 
A random variable representing the e r r o r  in eccentricity. 
AE has the cumulative distribution function H (ne). 

A value for the e r ror  in flight path angle at insertion A T o  
where KO is normally distributed. 

A normal random variable representing the e r r o r  in flight 
path angle at insertion. 

A discrete random variable approximation to the e r r o r  in 
flight path angle at insertion A r o ( A r o  is normally distributed). 

A value for the e r ro r  in perigee radius ARp. 

A random variable representing the e r r o r  in perigee radius.  
A R p  has the cumulative distribution function F ( A r p ) ,  and 
probability density function f (A rp ) .  

A discrete random variable approximation to the e r r o r  in 
perigee radius ARp. 

A value for the e r ro r  in insertion radius A R o  where ARo is 
normally distributed. 

The e r r o r  in true anomaly at insertion. A value A@ can as- 
sume. 

A random variable representing the e r r o r  in true anomaly of 
the spacecraft at insertion. 

A normal random variable representing the e r r o r  in insertion 
radius. 

A discrete random variable approximation to the normal 
random variable ARo where ARo represents the e r r o r  in 
radius at insertion. 

A value for the e r r o r  in the magnitude of the insertion velocity 
AVO which is a normal random variable. 
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A normal random variable representing the e r r o r  in the 
magnitude of the velocity at insertion. 

A discrete random variable approximation to the normal 
random variable A V O  which represents the e r r o r  in inser- 
tion velocity magnitude. 

A subdivision of the range of the normal random variable 
approximation for Y (i = 1, 2,  3). We have 

A Y i  = (+)UYi 
where uY is the standard deviation of Y i. 

Flight path angle at insertion measured from the normal to 
the radius vector at insertion, pointing in flight direction, 
against the direction of motion (i.e., clockwise i f  motion is 
counterclockwise), such that the direction at yo = 90" is 
radially away from the center of attraction. 

True anomaly of the spacecraft at insertion into parking orbit - 
the angle measured from the perigee radius  to the radius vec- 
tor at insertion in the direction of motion. 

A variable in the secular (characteristic) equation of P . 
Eigenvalues of the covariance matrix P o r  elements of the 
diagonal matrix C T R ,  the covariance matrix of Y. We have 
X = ~ ~ , X ~ = u ~ , a n d A ,  = u  2 . 

y 1  y 2  y 3  

Covariance matrix of the normal random vector W having 
correlated normal random variables ARo, AVO, and A r 0  as 
components. 

Gravitational constant of the earth (398603.2 km3 /sec2). 

Coefficient of correlation ( 1 p 1 5 1). 

Coefficient of correlation between ARo and AVO. 

Coefficient of correlation between AVO and Oro. 

Coefficient of correlation between ARo and Are. 
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%x2 

p x 2 x 3  

p x 1 x 3  

U U U  
Y1' Y2' y 3  

U 2  U 2  C T 2  
Y1' Y2" Y 3  

U r o *  U v o *  f f ~ o  

uAro uAvo 5A70 

2 2 2 
UAro UAv, ' QAyo 

UAro Avo 

UAv 0 AY 0 

0 AYO 

U 
X l X 2  

Coefficient of correlation between X, and X, . ( X ,  and X, 
Z1-e ~ t ~ i i d a r d i ~ ~ c !  i~~i.ma!  rad^^^ KE~zI .~ !~  S) . 
Coefficient of correlation between X, and X,. (X, and X, 
are standardized normal random variables). 

Coefficient of correlation between X, and X,. (X, and X, 
are standardized normal random variables) e 

Standard deviations of the uncorrelated normal random vari- 
ables Y,, Y,, and Y,. 

Variances of the uncorrelated normal random variables Y 1 ,  

Y,, Y,. Diagonal elements of C T R .  

Standard deviations of the correlated normal random variables 
( r ,  + AR,), (vo + AVO), ~d (Yo + nr,>. 

Standard deviations of the correlated normal random variables 
AR,, AVO, and No. 

Variances of the correlated normal random variables AR,,  
AVO, and Ai?,. Diagonal elements of A , the covariance matrix 
of w .  

Covariance between the normal random variables AR, and AVO. 
Off diagonal element of A ,  the covariance matrix of W .  We 
have DA - - 

PAr A v o  UAr UAvo * roAv0  

Covariance between tp normal random variables AVO and 
Ar,. Off diagonal element of A ,  the covariance matrix of W. 

- - 
We have 0 0  by PAvo Ayo uAvoUAyo 

Covariance between the normal random variables AR, and 
Ar,. Off diagonal element of A ,  the covariance matrix of W. 
We have CT 

- - 
h r o  AYO PAr Ay, OAr OAy, * 

Covariance between the standardized normal random vari- 
ables X , and x,. Off diagonal element of P , the covariance 
matrix of X (also called the correlation matrix). We have 

standardized variables. 

since X, and X, a re  - - - 
u x 1 x 2  - P X 1 X 2 ~ X 1 ~ X 2  P x 1 x 2  
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Covariance between the standardized normal random variables 
X, and X, . Off diagonal element of P ,  the covariance matrix 

X, are standardized variables. 

since X, and 
f%x3 

O D  = - - of X. We have uxZx3  
p x 2 x 3  x 2  x 3  

Covariance between the standardized normal random variables 
XI and X,. Off diagonal element of P, the covariance matrix 

- - - since both X, 

and X, are standardized variables. 

of X . We have cX,  x 3  P x 1 x 3 D x 1 D x 3  - P x 1 x 3  
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APPENDIX A 

EXPRESSION FOR THE PERIGEE RADIUS IN TERMS OF THE INSERTION 
PARAMETERS 

The basic Keplerian two-body equations of motion which relate the insertion 
parameters ro, v0, and yo  t o  the orbital elements a, e, and 8 (see Figure 1) 
are  : 

vo 2 = p (: 2) 

- a ( 1  - e2> 
1 f ecos8 - (A.3) 

where ro, vo, yo are respectively the magnitude of the radius vector at insertion, 
the magnitude of the velocity vector at insertion, and the flight path angle at in- 
sertion. The semi-major axis is a, the eccentricity of the parking orbit is e, 
and the true anomaly of the spacecraft at insertion is 8. The gravitational con- 
stant is y. 

The perigee radius rp is the value of ro when 8 = 0". From (A.3) we have: 

r P a ( 1 - e ) .  (A.4) 

Rewriting ( A . l )  

Substituting (A.5) into (A.2) and solving for  e we have 

2 

in2 yo + ( - ro;: - I) cos2 yo 
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where the positive sign is taken by definition. Using (A.5) and (A.6) we can write 
(A.4) as: 
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THE CUMULATIVE DISTRIBUTION FUNCTION O F  PERIGEE ERROR 
BY NUMERICAL INTEGRATION 

The perigee radius rp can be expressed as a function of the insertion par- 
ameters r o ,  vo, and yo (Appendix A) 

In calculating these insertion parameters from measurements, the e r r o r s  
A r o ,  Avo, and Ay, are  introduced. Therefore, the calculated perigee radius 
r will deviate from the actual perigee radius rp by the amount A r p .  
Peal 

Let u s  denote by ARo, AVO, and A r o  random variables representing the e r -  
Further, let u s  assume ro r s  in the calculation of the insertion parameters.(') 

that the random vector 

has a trivariate normal distribution with zero mean vector and covariance 
matrix A 

( l ) I t  should be  noted that bo i s  a which the random variable ARo can assume. The proba- 
bility that ARo is less than or equal to Aro i s  a function of Are. Mathematically, we write 

where F 1  (Are) i s  the cumulative distribution function of A R ~ .  
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GAr A v  

where v i ro  ,cgv0, and G&, are  the variances of ARo, AVO,  and A r 0  respectively, 

and D A ~ , A ~ , ,  

variables.' 2 '  

and D A ~ ~ A ~ ~  are the covariances between these random 

Then W has the density function(3) 

Since W has a trivariate normal distribution, ARo,  AVO, and A r 0  are 
normally distributed random variables, and 

is a random variable with a cumulative distribution function F (A rp) and a prob- 
ability density function f (Arp). Although F(Arp) can be expressed in integral 
form, the integral cannot be expressed in terms of known o r  tabulated functions. 
It must be evaluated by numerical techniques - either a Monte Carlo approach 
o r  numerical integration. The latter approach will be described in the following 
paragraphs. In an effort to simplify notation we will  use  matrix algebra wherever 
possible. 

Since ARo, A v o ,  and No are jointly distributed with a trivariate normal dis- 
tribution, they can be expressed as linear functions of 3 uncorrelated normally 
distributed random variables, Y, , Y,, and Y,. And, since uncorrelated normally 

(*'By definition GA A ~ A ~ ~ A ~ ~  G A ~ ~  GA,, where 5 A r  ro v o  0 0  

and AVO, ~ A , , A ~ ,  is the coefficient of correlation between ARo and AVO, and DA 
are the standard deviations of ARo and AVO respectively. 

i s  the covariance between ARo 
and G-A~ 

I O  

( 3 ) W T  i s  the transpose of w, A-' i s  the inverse of A and 1 A I i s  the determinant of A.  

0 
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.?,ic,t,ribzted r=&m l!sIT.i&lps 
sense), their joint probability density function is given by the product of their 
marginal distributions. This is the essence of the technique. First ,  a linear 
transformation is made from the correlated space of ORo, Avo,  and O r o  to an 
uncorrelated space of Y,, Y,, and Y,. Computations are  made in the uncorre- 
lated space to obtain the joint probability density function of Y,, Y2, and Y,. 
Then, using the inverse linear transformation, the joint density of A R o ,  AVO, and 
A r 0  is obtained. Finally, the probability density function of perigee e r r o r  ORp 
is calculated using (B.6) and values for ro, v0, and yo. The cumulative distri- 
bution function is obtained by summing the probability density function of ARp. 

I?pcppszpi!y a*&pefident (k* the pr(?h&i!+r 

Let u s  first express ORo, AVO, and O r o  in terms of standardized normal 
random variables X,, X, , and X,. ( 4 )  The reason for doing this is to avoid 
numerical problems in the machine program which diagonalizes the covariance 
matrix. 

- 
AVO - 5Av0 x2 

(J3 .7)  

From (B.7) it i s  seen that the coefficients of correlation between the vari- 
ables x,, x,, and x, are  the same as the coefficients of correlation between the 
variables ARo, AVO, and Are. For example, the coefficient of correlation between 
XI and x2, PXlX2 is the same as the coefficient of correlation between ARo and 
A v o ,  since(’) 

(4)The standardized normal random variable X has zero mean and unit variance, and probability 

density function g(x)  given by: 

g (XI = (2n)-% e - x 2 / 2  ( - C O  < x < CO). 

‘ 5 ’ E ( X , )  is the expectation of a random variable X I .  E is the expectation operator. 
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Denoting by X the random vector 

x =  

and by A the matrix 

(B.9) 

(B.lO) 

the transformation indicated in (B.7) can be written as 

w = A x  (B.ll) 

Thus X has a trivariate normal distribution with zero mean vector and co- 
variance matrix P (also called the correlation matrix) given by(6) 

P = E(XXT) = &[A-l  W(A-l W)T]  = &[A-'WT (A-l)T] 

T (6)The covariance matrix of a random vector X with zero mean i s  defined a s  & ( X X  ) where E is 
the expectation operator. 
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(B.12 
c ont ‘d . ) 

We now wish to express X as a linear function of a normal random vector 
Y having components which a re  uncorrelated. Then, since W is a linear function 
of X, the components of W will also be linear functions of these same uncorre- 
lated random variables. Denoting by Y,, Y2, and Y3 uncorrelated normally dis- 
tributed random variables we can write the system of equations as 

o r  in matrix form 

where 

- 
X l  - ‘11’1 -t c 1 2 y 2  ’ ‘13’3 

- 
x 2  - ‘21 ‘1 -t ‘22’2 ’ ‘23’3 

- 

x 3  - ‘31’1 ’ c 3 2 y 2  -t ‘33’3 

x = CY 

Y =  f] 
y 3  

and C is the nonsingular matrix of coefficients 

c 1 2  

(B.13) 

(B.14) 

(B.15) 

(B.16) 
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Since C is anonsingular square matrix, the inverse B = C-l exists, and we 
may write the Y vector as (7)  

Y = C - l X  = BX (B.17) 

o r  

'1 = '11 '1 ' '12'2 ' '13 '3 

'2 '21 '1 ' '22 '2 ' '23 '3 (B.18) 

'3 = '31 '1 ' '32'2 ' '33'3 

Since Y,, Y2  , and Y3 are uncorrelated, the following relations hold among the 
elements of B and the variances and covariances of X,, X2, X3 and Y,, Y 2 ,  and 
y3. 

0- y 1  q1 ' q2 ' q3 ' 2 ( b l l b l 2 P x I x 2  ' b12  '13 'X2X3 ' b l l  '13 p x 1 x 3 )  

' b22  '23 ' ~ 2 x 3  ' '21 '23 p x 1 x 3 )  

' ':2 ' '3'3 ' * (b31 b32 P x l x 2  ' '32 b33 ' ~ 2 x 3  ' '31 b33 ' ~ 1 x 3 )  

1 2 1  ' '12 b 2 2  ' b13 '23 ' ('11 '22 ' '21 '12) p x l x 2  (B.19) 

- 

D y 2  y 3  
- 

b 2 1  b31 ' '22 '32 + '23 '33 ' ('21'32 ' '31 '22) p x 1 x 2  

= o  ' ( b 2 2  b33 ' b32 '23) p x 2 x 3  ' ('21 '33 ' '31 '23) p x 1 x 3  

(')bij is the element of B in the i fh  row and j t h  column. 
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In matrix notation (B.19) is equivalent to the requirement that 

have a covariance matrix Q given by 

Q = F ( Y Y T )  = E 

F 

y 2  Y l  

y3 Y l  

; 2  0 
y1 

0 

0 f f =  
y 3  

0 

(B.20) 

(B.21) 
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However Q can be written also as 

Q = €(YYT) = B€(XXT)BT = C-lP(C-l)T (B.22) 

Thus, the problem becomes that of finding a nonsingular matrix which 
diagonalizes P. From matrix theory, since P is a real  symmetric square 
matrix of order 3,  there exists an orthogonal matrix E of order 3 such that 
EPET = D, where 

D =  

I 
0 0 

0 A 2  0 

0 0 
c 

d 

(B.23) 

is a diagonal matrix of order 3. 

Moreover, since P is also positive definite, the diagonal elements (eigen- 
values) X 1, A,, and A, are  all positive. Any diagonal matrix which is obtained 
by another orthogonal transformation of P, has the same diagonal elements X 1y 

A,, and A , ,  possibly in a different arrangement. Hence, in the above we can 
let B be an orthogonal matrix. Then A 1, h 2, and A, are  the variances of Y 1, 

2 2 2  y,, and y,, or  w y 1  , cJyz’ wy3.  

P is given by 

P =  

1 P P 

P 1 P 

P P 1 

(B.24) 

To find the eigenvalues of P we must find the roots of the secular equation 
(characteristic equation) 

IP - XI1 = 0 (B.25) 
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Here I is the identity matrix of order 3. Note that the eigenvalues of a 
real symmetric matrix are always real, 

Equation (B.25) can be written in expanded form as 

(A- 113  - 2 p 3  - 3 p 2 ( ~ - 1 )  = o (B.26) 

Solving (B.26) for the roots we obtain 

(B.27) 

Since two of the roots are equal, the orthogonal matrix for transforming P 
into diagonal form is not unique. However, it can be constructed. Let u s  now 
construct the orthogonal matrix C.  Since C is orthogonal, C-' = CT. Therefore, 
C = BT or  

The eigenvector, 2, = ( c ~ ~ c ~ ~ c ~ ~ ) ~  corresponding to A, = (1 + 2p) must 
( j  = 1, 2, 3) must satisfy the matrix equation be such that the components c j  
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o r  

or  expanding the above 

= o  - 2 c l l  ’ ‘21 ‘31 

‘11 - 2 c 2 1  ’ ‘31 = o  

(B.29) 

(B.30) 

C l l  t c 2 1  - 2 c 3 1  = 0 

From the first two equations of (B.30) we obtain c1 = c 2  and from the 
second two equations c2: = c3 1. Since equation (B.29) is linear, we may make 
the length of the vector x 1  unity, thus requiring 

2 2 = 1  
.i21 + ‘ 2 1  + ‘31 

Equation (B.31) is satisfied if 

(B.31) 

(B.32) 

The eigenvector z2 corresponding to  X 2  = (1 - p )  must be such that the 
components of cj ( j  = 1, 2,  3) satisfy the matrix equation 

(B.33) 
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from which we obtain three equivalent scalar equations in the c i  2 ’ s  

f c 2 2  + c32  = 0 c 1 2  

C I 2  f c 2 2  + c 3 2  = 0 

C 1 2  f c 2 2  + c 3 2  = 0 

(B.34) 

pendent vectors subject to the condition that they are orthogonal and that they 
satisfy the above equations in (B.34). Setting c 1 2  = 0 in (B.34) we obtain c 2 2  = 

1 
- c ~ ~ .  Thus,if c~~ = - and c~~ - - -  - -+ will be normalized. Furthermore, 

1 

fi fiy x 2  
we will have the dot product (SI) G,) = 0 . ( 8 )  Hence 

(B.35) 

To obtain the components of 2, we use the fact that we must have 2, -+ x3 = 0 
4 

and S2 x3 = 0 simultaneously, that is 

+ - + -  

x 1  x3 - ‘ 1 3  ’ ‘ 2 3  ’ ‘33 = o  

(B.36) 

4 4 -  x 2  x3 - ‘ 2 3  - ‘33 = o  

(*)It  should be noted that the eigenvectors of a real symmetric matrix are necessarily orthogonal. 
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from which we obtain 

and 

Normalizing we obtain 

- 
'13 - - 2 c 2 3  

- - 
c23 c 3  3 

i 
Thus, the orthogonal matrix C is 

C 

and therefore B is 

B =  

0 

1 - 
fi 

a 
1 -- 

-- 

6 
1 - 
6 3 

(B.37) 

(B.38) 

(B.39) 

(B.40) 

It can be verified that the elements of B satisfy the equations in (B.19) which 
relate the variances and covariances between the components of X and Y with 
p q x 2  - p x z x 3  - - p x 1 x 3  = p .  The linear equations for this example are there- 

fore, from (B.13) 

- 
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x 2  = (-+ + (+)% -k ( 3 y 3  (B.41) 

For  the other combinations of signed values for the correlation coefficients 
which keep the covariance matrix of X nonsingular we 

P X 1 X 2 '  P x 2 x 3 '  and P X l X 3  

h h e  the following orthogonal matrices C, , C2, and C, which diagonalize P, , 
P2,  and P, respectively. 

For the covariance matrix 

'1 

the orthogonal matrix 

c, = 

diagonalizes P . 
For the covariance matrix 

0 

1 -- 
fi 

fi 
1 - 

(B.42) 

(B.43) 

(B.44) 
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the orthogonal matrix 

0 

1 - 
fi 

1 - 
fi 

fi 
1 3 6 

(B.45) 

diagonalizes P, . 
And, for the covariance matrix 

P 

1 

- P  

the orthogonal matrix 

(B.46) 

1 
c3 = 1-z 

0 

1 -- 
fi 
1 

6 
1 - -  -3 fi 

(B.47) 

diagonalizes P, . 

Each of the orthogonal matrices indicated above was obtained in the same 
manner. It should be noted that in this special case where each coefficient of 
correlation has the same absolute value, each covariance matrix has the same 
eigenvalues: 
acteristic equation is the same in each instance. 

A, = 1 + 2p, h, = 1 - p ,  h, = 1 - p ,  inasmuch as the char- 

In the same manner a s  was done for the random vector W we may express 
Y in terms of a standardized normal vector Z having uncorrelated standardized 
normal random variables Z , ,  Z,, and Z, as components. 
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- 

y2 - f fY 2 z2 (B.48) 

Finally, we may write ARo, AVO, and ATo a s  linear combinations of 2 1, 2, , 
and 2,. 

Now, since Y 1, Y 2  , and Y are uncorrelated normal random variables, they 
are independent in the probability sense. ( ) 

density function f (y  ,, y2, y,)  factors into the product of the marginal distribu- 
Therefore, their joint probability 

tions of y 1 , Y 2  9 and Y, 9 o r  f (y,), f ,(y,), and f 3 (Y,) . 

Denoting by g (x,, x2, x,) the density of X , ,  X,, X,, and noting that by (€3.13) 
the transformation from the y-space to the x-space is one-to-one, as well as 
from the x-space to the y-space (B.18), the density of X, , X, and X, is 

~~ ~~ ~~ 

(9)We note that uncorrelated random variables are not always independent. However, independent 
random variables are always uncorrelated. 
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where J ( x l ,  x 2 ,  x3)  is the Jacobian 

J ( x l ,  x 2 ,  x3 )  = m o d  (B.52) 

and rrmodII means the absolute value of the expression following it. Using (B.18) 
we can compute J (x, ,  x 2 ,  x3) as follows: 

b l l  b12 13 

b2 1 b2 2 b 2 3  

b3 1 b3 2 b3 3 

= m o d  lBl (B.53) 

However, since B is an orthogonal matrix, J (x, ,  x 2 ,  x3) = 1. Therefore, 
using (B.50) and (B.51) the joint density of X,,  X,, and X3 with the aid of (B.13) 
is given by 

P ( x l  < X, I x1 f Ax,,  x 2  < X, 5 x 2  + Ax,, x3  < X, 5 x3  f A x 3 )  
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For purposes of machine computation, the range of each random variable 
Y i ( i  = 1, 2 ,  3) w a s  approximated by (2N + 1) mutually exclusive intervals of 

length ($)uyi extending from -Lcyi  to  L c y i  , and the probabilities of falling 

within these intervals approximated in the following manner. 

First ,  (2N + 1) values fo r  the normal probability density function were cal- 
eulated for each Y i  

where 

( k  = 1 , 2 , 3 ,  ..., ( 2 N  + 1) )  

( i  = 1 , 2 , 3 )  

Then, the sum Si was  formed 

2 N +  1 
1 

Next ,  the qik ‘ s  were normalized, i.e., p .  ‘s were formed where 
Ik 

qi 

Si pi,  - 
- - 

( k  = 1 , 2 , 3 ,  ..., ( 2 N  t 1)) 
( i  = l , 2 , 3 )  

(B.55) 

(B.56) 

(B.57) 

57 



Next, defining Y; , Y; , and Y; as discrete random variables approximating 
the normal random variables Y , Y , and Y we may write 

(B.58) - - 
p ( y ;  = Y I k )  Pi, 

( i  = l , 2 , 3 )  

(k = 1 , 2 , 3 ,  ..., ( 2 N  t 1)) 

And, we may write the probability that Y i  should fall within the interval 

( Y I ,  -(;)AYi9 Y;, + ( + ) A Y i )  (B.59) 

where 

AY, = (+) UYi 

as follows 

(B.60) - 
t (+)AYi}% P(Y; = y; , )  - Pi 

( i  = 1 , 2 , 3 )  

( k  = 1 , 2 , 3 ,  ..., ( 2 N  +- 1)) 

Thus, each normally distributed random variable Y i  (i = 1 ,  2 ,  3) has been 
approximated by a discrete random variable Yi (i = 1,  2 ,  3) in the range -Luyi  
to + L u Y i  and having probability mass points p i ,  (i = 1, 2 ,  3; k = 1, 2 ,  3 ,  . . . 

1 
(2N -t 1)) at the center of each subdivision ( y l k  - (T)AY , y i k  ' + (+)AYi) .  

It is easily verified that the probabilities for each Y1 sum to 1, since 

2 N +  1 2 N +  1 2 N +  1 

C P t Y I  = Y 1  k ) = C P i k  = (e) CClik = 1 
k =  1 k =  1 k =  1 

(B.61) 
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Since each Y I can assume ( 2 N  + 1) possible values,  y:k , each with probability 

(k = 1, 2, . . . 2 N  + 1) there will be a total of ( 2 N  + 1)3 possible values for p.  

the approximation to  the joint probability density function of Y , Y , and Y 3 .  

Since the Y i  's are independent, the probability of occurrence pj  
bination of values for y '  , y i k  , and yA1 ( j  , k ,  1 = 1, 2, 3, . . ., ( 2 N  + 1)) is 

given by the product of p l j  , P , ~ ,  and P , ~  i.e., 

' k  

of each com- 

1 j  

(B.62) - - 
P j k l  P l j  pak p31 

(j,k,l 1 , 2 , 3 ,  ..., ( 2 N +  1)) 

In order to distinguish between the continuous random variables and the dis- 
crete approximations to  these variables, let Xi, Xi, Xi, AR;, AV;, A r d ,  and AR; 
be the discrete random variables which approximate XI , X,, X,, ARo, AVO, Are, 
and A RP , respectively. 

For  each combination of values for Y i , Y i ,  and Y A , the probability of occur- 
rence was obtained using (B.62), the inverse transformation to  the correlated 
set Xi , X;, and X; made using (B.13), and values calculated for AR:, AV;, and 
A r A  using (B.7). Since there is a one-to-one correspondence from the uncorre- 
lated y -space to the correlated space of AR;, AV;, and Ar; , the joint density 
function approximation of ARo, AVO, and ATo w i l l  have ( 2 N  + l), possible values, 
and for each combination of values for AR: , AV:, and Ar ; we may obtain a value 
for A R d ,  using (B.6). Therefore, the discrete approximation to the probability 
density function of ARp will also have ( 2 N  + 1)3 possible values. At this point 
we should note that A R p  as given in (B.6) depends on actual values r o ,  v0, and 
YO. 

We will now discuss how the actual values for ro  , vo ,  and yo  were calcu- 
lated. 

First, actual values for the semi-major axis a ,  the true anomaly of the 
spacecraft at insertion 0 , and the eccentricity of the parking orbit e , were 
assumed. 

The insertion radius r o  was obtained using (A.3) of Appendix A. 

- a ( 1  - e 2 )  
1 + e cos 0 - (B.63) 
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The insertion speed vo was obtained from (A.l) of Appendix A. 

VO = ( P F )  (B.64) 

In order to obtain the flight path angle at insertion y o ,  let u s  rewrite (A.2) 
of Appendix A. 

From (A . l )  

r 2 
- -  - 2-(e) rovo 

P 

Substituting (B.66) into (B.65) gives 

(B.65) 

(B.66) 

(B.67) 

Solving for (G) in (B.63) and substituting the result int (B.67), we have 

YO 1 t e cos 8 (B.68) 

The actual (or assumed) perigee radius rp was obtained using (B.1). 

Thus, with assumed actual values for r o ,  v o ,  yo ,  and rp , and by using all 
the ( 2 N  + 1)3 possible combinations of values for Y , Y;, and Yi with their 
corresponding (2N + 1)3 probabilities p j k l  = plj  p2k pJI ( j ,  k ,  1 = 1, 2,  3,  . . ., 
(2 N + 1)) ,  an approximation to the probability density function of A RP through 
the transformations indicated in (B.13), (B.7), and (B.6) was obtained. 
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It is easily seen that the probability density function approximation for ORp 
sums to 1.  

Y P i j k  
i .  j . k = l  

(B.69) 

where f (A rp) is the probability density function of ARp. 

The cumulative distribution function of ORp o r F  ( A T p )  is given by 

(B.70) 

For purposes of machine computation, the range of A R p  w a s  subdivided into 
2000 mutually exclusive intervals o r  "bins!' one tenth of a kilometer wide and 
extending from -80 kilometers to +120 kilometers. For all values of AR; falling 
within one of these intervals, the associated probabilities were summed. This 
can be done since all of the (2N + 1)3 possible combinations of values for AR;, 
AVA, and Or: are mutually exclusive. In this fashion we obtain an approximation 
to the probability density function of ARp. The cumulative distribution function 
approximation for A R p  was then obtained. by summing the probability density 
function approximation for ARD. 

A Fortran IV computer program was  written and used to calculate the 
probability distribution of perigee e r r o r  on the UNIVAC 1108 computer. For 
L = 4 and N = 50, i.e., approximating the normal curve from -4 standard de- 
viations to +4 standard deviations in (2N + l) = 101 equally spaced intervals 
(0.08 standard deviations in width), the calculations took approximately 4 minutes 
to obtain the probability density function and cumulative distribution function ap- 
proximation to A R P  for a given set of insertion conditions. 
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Expression For the Er ro r  in Perigee For a Circular Orbit 

The expression for the e r r o r  in perigee for a circular orbit is somewhat 
less complicated than the expression in (B.2). We will now treat  the circular 
case. 

Let us  first rewrite equations (A.l), (A.2), and (A.4) of Appendix A. 

2 
- =  1 (e)-(+) 
a 

r a ( l  - e)  
P 

Substitute (B.72) into (B.71) and also into (B.73) 

(B.71) 

(B.72) 

(B.73) 

(B.74) 

(B.75) 

or  

r P  

T O  

2 

e z l t ( L - 3 )  -- (B.76) 

Rewrite (B.34) and multiply by rp. 

2 

r P (1 - e ) ( 1  + e)  P '0) rp (e-?). (B.77) 
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Cancel (1 - e) in (B.77) using (B.75), and substitute (B.76) into (B.77) for 
( e  + i j .  Tile i.es-uii is 

( vo2 rO3 cos2 yo ) 
2 r o r p  t ( v' > '') - - 2rp2 t 

P 
(B.78) 

Substituting ( ro + nro)  for ro ,  ( vo + Avo) for vO, ( yo + nyo> for yo, 

j 
(rp + Arp) for rp, and collecting terms, we have 
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t [- (t) v,' r," cos ( 2 y J  ( A Y ~ ) ~  f higher order terms. I 
(B.79) 

2 rove 
For a circular orbit Y, = O",  ( ~ ) = 1, and rp  = ro .  Making these sub- 

stitutions in (B.79), and neglecting terms of order higher than the second, we 
have 

(B.80) 
Ar 

and finally, 

The minus sign has to be used in (B.81) since Ay, has to produce a negative 
Ar if AT,, = Avo = 0. (The plus sign is applicable to the e r ro r  in apogee.) 
Thus, the perigee e r ro r  for a circular orbit becomes: 

P 
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As a check against the calculations performed by the computer, the prob- 
ability density function of the e r r o r  in perigee for a circular orbit was obtained, 
assuming the insertion e r r o r s  to  be perfectly correlated (coefficients of corre- 
lation between the insertion e r ro r s  of +1.0) and normally distributed. 

If A R ~ ,  AVO and A r 0  are normally distributed random variables mutually 
correlated with coefficients of correlation of +1.0, there is complete linear de- 
pendence between them. Thus, they will vary in the same sense. Let X denote 
the standardized normal random variable (zero mean and unit variance). We 
may then write (B.82), substituting ARp for Ar,, ORo for A r o , A V o  for Avo, and 
-Are for Ay,, as 

ARP = 2 [($) AVO + ARo] - J[(?) AVO + AR0]' + (ro A r o ) 2  

(B.83) 

are  the standard deviations of ARo, A v o  and ATo respec- where u A r  o' u ~ v .  9 DAY, 

tively . 
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we can write (B.83) as 

nRP 1 I X - ~ ~ X I  (B.84) 

Letting F ( A  r p )  denote the distribution function of AR,, C( x) the distribution 
function of X, and assuming m > 1, w e  have: 

F ( A r , )  = P r o b ( A R p  L A T p )  = P r o b ( 1 X  - m l X l  L A',) (B.85) 

For x < 0, 1x1 = -X,  and we have 

P r o b ( 1 X  - mlXI  L A r , )  Prob { X I  ____ 1 f m  } = G(%) 1 f m  (B.86) 

P r o b ( l X - m I X 1  F A r p )  = Prob((1 - m ) X  L A T p )  

= P r o b ( ( m  - l ) X  > - A T p )  = 1 - Prob 

(B.87) 

Since the events x < 0 and x 2 0 are mutually exclusive, the total probability, 
or  F(Arp)  is given by the sum of (B.86) and (B.87) 

F ( A r p )  = P r o b ( 1 X  - m 1x1 5 Ar,} 

(B.88) 
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(B.88) 
(cont 'd .) 

Letting f ( A r p )  be the probability density function of AR,, and g(x) the 
standardized normal density function, then we have the following relationship 
between f (AT,) and g(x). 

~ 

I 
These functions f (AT,) and F(A rp)  a re  shown in Figures 17  and 18. 

I 
f ( A r , )  

~ 

I 

0.041 

0.02 

/ 

-30 -25 -20 -15 -10 -5 0 A r p  

( k d  
The Probability Density Function f of Perigee Error ARp for a Circular Orbit when 

= t1.0). 
Figure 17. 
the Insertion Errors Are Perfectly Correlated (PAr .Avo = P A v , ~ y o  
Insertion Parameters: a = 3544 n.mi. (6563 km), e = 0. 

- - 
P A  r oAY 

67 



1 .o 
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0.6 
h 

n 
L 
a 
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0.2 

0.0 

Figure 18. T h e  Cumulative Distribution Function F of Perigee Error AR 
when the Insertion Errors Are Perfectly Correlated (PA r o A v o  - P A v o A r o  
Insertion Parameters: a 3544 n.mi. (6563 km), e 0.0. 

for a Circular Orbit 

PAr ,Ay,  = 1.0). 
- P 
- - 

Expression for the Perigee Er ro r  fo r  Eccentricities In the Range 
0.005 5 e S 5 0.05 

For eccentricities in the range of approximately 0.005 to 0.05, the following 
expression taken from Reference 5 (equation (9)) is a good approximation for the 
error  in perigee. It is repeated here. 

It is evident that, if AR,, AVO, and Ar, are all normally distributed, then, for 
a fixed O (true anomaly of the spacecraft at insertion) and e (eccentricity), 
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ARp will also be normally distributed, having a zero mean, and a variance given 
I-, . 
UY 

t ro2 sin260Ato t 4 (  2 - cos e )  ( 1  - cos 8)  (:I) - PAro,hv, ohv, 

In order to compare the distribution of AR, as calculated by numerical in- 
tegration with the normal distribution approximation, we note Figures 19 and 20. 
In each instance, the semi-major axis is a = 6563 km, the eccentricity e = 0.01, 
and the standard deviations of ARo, AVO, and O r o  are 

uAr , - 0.8 n . m i .  (1.4816 km) - 

aA" 0 = (%) ft/second (1.62 m / s  

(9 .3  mad) 
0 

(B.92) 

In Figure 19, the coefficients of correlation between the insertion e r r o r s  
are all +0.9. In Figure 20, the insertion errors  are uncorrelated. Both figures 
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show the 99.5% probability points as a function of true anomaly 0 .  The agree- 
ment between the two curves is good. 

TRUE 
ANOMALY AT 
INSERTION e 
(degrees) 

Figure 19. Comparison Between the Required 99.5% Padding as Calculated by Numerical 

Integration and the Required Padding Using a Normal Distribution Approximation. Insertion 

Parameters: a = 3544 n.mi. (6563 km), e 0.01. Insertion Errors Are Posit ively Correlated 

(Coefficients of Correlation = t0.9). 
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TRUE ANOMALY 
" "  AT INSERTION e 

0 45 9o 135 180 225 270 315 360 (degrees) 

Figure 20. 
integration and the Required Padding Using a Normal Distribution Approximation. 

Parameters: a = 3544 n.mi. (6563 km), e - - 0.01. Insertion Errors Are llncorrelated. 

Comparison Between the Required 99.5% Padding as Calculated by Numerical 

Insertion 
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APPENDIX C 

THE CUMULATIVE DISTRIBUTION FUNCTION OF THE ERROR IN 
ECCENTRICITY. 

The eccentricity 
Appendix A (equation 

e can be expressed as a function of ro, vo, and y o  . From 
A.6) 

In calculating the insertion parameters r o ,  v0, yo, the e r r o r s  A T o ,  Avo, and 
Oy, are introduced. Therefore, the calculated eccentricity ec a 

from the actual eccentricity e ,  by the amount Ae 
will deviate 

Letting AE be a random variable representing the e r r o r  in eccentricity, and 
ARo, AVO, oTo random variables representing the e r r o r s  in insertion radius, 
speed, and flight path angle respectively, we may write with the aid of (C.2) 

AE = e ( r o  + ARo, vo + AVO, y o  + Are> - e ( r o ,  vo9 y o )  

The probability density function approximation for AE was obtained in an 
analogous manner as was done for AR (Appendix B). In an effort to shorten 
machine calculation time, however, each normal probability density function 
(in the uncorrelated y -space) was approximated by a discrete probability dis- 
tribution having 81 mass points (instead of 101), extending from -4 standard 
deviations to +4 standard deviations. The width of each bin for the error in ec- 
centricity was taken as 

P 

The Error  In Eccentricity for a Circular Orbit 

Equation (C. l )  may be written 
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Substitute (e + n e )  fo r  e : ( r u  + Are) fn r  r o r  ( v 0  + A v o )  fer v 0 9  \/o f- " / o I  h r  

for y o  and collect terms. 

2 2 
1 - e2 - 2 e n e  - (ne) '  = (;) rovo  cos2yo 

I + {(T)r :  8 v: s i n  yo cos y o  - ( T ) r o v o  8 s i n  yo  cos yo Avo nyo 
P 

( P 2 )  vo cos yo 
2 2  2 }  ' 

+{+)rotos 2 yo - - 

1 vo cos2yo -(T) 2 rov:cos2yo n r o  +{3 ' 

{+)vo cos2yo - 

2 

- ($)r:v: c o s  yo (C 05) 
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-{$) V: cos2yo} (Aro>2 f higher order terms (C.5 
cont'd.) 

For a circular orbit e = 0 ,  = 1, and 7' = 0". Making these substi- 

tutions in (C.5), and neglecting terms higher than the second order, gives, 

1 -(-p) ( n r o > 2  
0 

Solving f o r  Ae in (C.6), we have, 

Since e = 0 for  a circular orbit and the calculated eccentricity must be 
positive (by the definition of eccentricity), A e  in (C.7) must also be positive. 
Therefore, the e r r o r  in eccentricity is, 

Ae - 
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APPENDIX D 

THE CUMULATIVE DISTRIBUTION FUNCTION OF THE ERROR IN 
TRUE ANOMALY. 

Using (A.3) we may calculate ti 

{ a  (1  -e:) - r o  } e = cos-1 

where a and e are functions of r o  , vo, and yo by (A.5) and (A.6) 

I The correct quadrant for 6 may be resolved from inspection of (B.68) 

- e sin 8 
tan y o  - 1 -t e cos 8 (B.68) 

We see that for y > 0", 0 5 8 5 180" and for  yo 1. 0", -180" 5 8 5 0". 
0 -  

Thus, we may write 

0 = tr ( T o ,  vo, y o )  (D.2) 

Letting No, AVO, KO be random variables representing the e r r o r s  in in- 
sertion radius, speed, and flight path angle, with the aid of (D.2) we may write 
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where A 0  is a random variable representing the e r r o r  in t rue  anomaly for a 
non-circular orbit. 

The cumulative distribution function of A@ 

may be seen in Figures 2 1  and 22. These were obtained in analogous fashion as 
for  c\Rp and AE. 

Figure 21 is for uncorrelated insertion e r ro r s ,  an eccentricity of e = 0.001 
and true anomalies at insertion of 8 = 0", go", 180", and 270". 

Figures 22a and 22b are for the same conditions of true anomaly at inser- 
tion and correlation, except the eccentricity is 0.005. 

Ae (degrees) 

Figure 21. 
Values of True Anomaly at Insertion. Insertion Parameters: a = 3544 n . m i .  (6563 km), e 
0.001. Uncorrelated Insertion Errors. 

Cumulative Distribution Functions of the Error in True Anomaly for Various Actual 
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A 0  
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Figure 220. Cumulative Distribution Functions of the Error i n  True Anomaly for Various Actual 

Values of True Anomaly at Insertion. Insertion Parameters: a = 3544 n.mi. (6563 km), e - 

0.005. Uncorrelated Insertion Errors. 

- 

Figure 

Values 

0.005. 

22b. 
of True Anomaly at Insertion. Insertion Parameters: a 3544 n.mi. (6563 km), 

Cumulative Distribution Functions of the Error i n  True Anomaly for Various A 

- 
Correlated Insertion Errors ( p ~ ~  - +0.9, P A ~ , A ~ ,  - ,AY, = t0.9) - 

ctua I 
e -  

- 
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The "3-sigma" limits used f o r  ARo, AVO, and Aroare 

3 0 ~ ~ "  = 2.4 n . m i .  (4 .44 km) 

= 16 ft/sec (4.87 m/sec) 

3u = 0.16" ( 2 . 7 9  mrad) 
b o  

From inspection of the curves it can be seen that for parking orbits with 
low eccentricities (e 5 0.001) true anomaly at insertion B cannot be determined 
accurately. For example, due to  tracking e r ro r s ,  for e = 0.001, B = 0" o r  
8 = 180", and uncorrelated insertion e r ro r s  (dashed curve of Figure 21) there 
is a 90% probability that the e r r o r  in true anomaly will be between -66" and 
+66". 

From Figures 22a and 22b it can be seen that true anomaly can be deter- 
mined more accurately if the eccentricity is greater. 
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